Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 9995, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1900651

ABSTRACT

Interactions between the gut microbiota and the immune system may be involved in vaccine and infection responses. In the present study, we studied the interactions between caecal microbiota composition and parameters describing the immune response in six experimental inbred chicken lines harboring different MHC haplotypes. Animals were challenge-infected with the infectious bronchitis virus (IBV), and half of them were previously vaccinated against this pathogen. We explored to what extent the gut microbiota composition and the genetic line could be related to the immune response, evaluated through flow cytometry. To do so, we characterized the caecal bacterial communities with a 16S rRNA gene amplicon sequencing approach performed one week after the IBV infectious challenge. We observed significant effects of both the vaccination and the genetic line on the microbiota after the challenge infection with IBV, with a lower bacterial richness in vaccinated chickens. We also observed dissimilar caecal community profiles among the different lines, and between the vaccinated and non-vaccinated animals. The effect of vaccination was similar in all the lines, with a reduced abundance of OTU from the Ruminococcacea UCG-014 and Faecalibacterium genera, and an increased abundance of OTU from the Eisenbergiella genus. The main association between the caecal microbiota and the immune phenotypes involved TCRϒδ expression on TCRϒδ+ T cells. This phenotype was negatively associated with OTU from the Escherichia-Shigella genus that were also less abundant in the lines with the highest responses to the vaccine. We proved that the caecal microbiota composition is associated with the IBV vaccine response level in inbred chicken lines, and that the TCRϒδ+ T cells (judged by TCRϒδ expression) may be an important component involved in this interaction, especially with bacteria from the Escherichia-Shigella genus. We hypothesized that bacteria from the Escherichia-Shigella genus increased the systemic level of bacterial lipid antigens, which subsequently mitigated poultry γδ T cells.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Microbiota , Poultry Diseases , Viral Vaccines , Animals , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Poultry Diseases/genetics , Poultry Diseases/prevention & control , RNA, Ribosomal, 16S/genetics , Receptors, Antigen, T-Cell , Vaccination/veterinary
2.
Virus Genes ; 58(3): 203-213, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1766911

ABSTRACT

Infectious bronchitis virus (IBV) and avian influenza virus (AIV) are two major respiratory infections in chickens. The coinfection of these viruses can cause significant financial losses and severe complications in the poultry industry across the world. To examine transcriptome profile changes during the early stages of infection, differential transcriptional profiles in tracheal tissue of three infected groups (i.e., IBV, AIV, and coinfected) were compared with the control group. Specific-pathogen-free chickens were challenged with Iranian variant-2-like IBV (IS/1494), UT-Barin isolates of H9N2 (A/chicken/Mashhad/UT-Barin/2017), and IBV-AIV coinfection; then, RNA was extracted from tracheal tissue. The Illumina RNA-sequencing (RNA-seq) technique was employed to investigate changes in the Transcriptome. Up- and downregulated differentially expressed genes (DEGs) were detected in the trachea transcriptome of all groups. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology databases were examined to identify possible relationships between DEGs. In the experimental groups, upregulated genes were higher compared to downregulated genes. A more severe immune response was observed in the coinfected group; further, cytokine-cytokine receptor interaction, RIG-I-like receptor signaling, Toll-like receptor signaling, NOD-like receptor signaling, Janus kinase/signal transducer, and activator of transcription, and apoptotic pathways were important upregulated genes in this group. The findings of this paper may give a better understanding of transcriptome changes in the trachea during the early stages of infection with these viruses.


Subject(s)
Bronchitis , Coinfection , Coronavirus Infections , Infectious bronchitis virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Bronchitis/genetics , Bronchitis/veterinary , Chickens , Gene Expression Profiling , Infectious bronchitis virus/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/genetics , Iran , Poultry Diseases/genetics , RNA , Trachea , Transcriptome/genetics
3.
Genes (Basel) ; 11(8)2020 08 10.
Article in English | MEDLINE | ID: covidwho-708422

ABSTRACT

The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.


Subject(s)
Chickens/genetics , Chickens/virology , Coronavirus Infections/veterinary , Host-Pathogen Interactions/genetics , Membrane Proteins/genetics , Animals , Coronavirus Infections/genetics , Gene Expression Regulation, Viral , Host-Pathogen Interactions/physiology , Infectious bronchitis virus/pathogenicity , Infectious bronchitis virus/physiology , Organ Culture Techniques , Poultry Diseases/etiology , Poultry Diseases/genetics , Poultry Diseases/virology , Viral Load , Viral Tropism
4.
Arch Virol ; 165(4): 835-843, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-71756

ABSTRACT

Avian infectious bronchitis virus (IBV) is a coronavirus with great economic impact on the poultry industry, causing an acute and highly contagious disease in chickens that primarily affects the respiratory and reproductive systems. The cellular regulation of IBV pathogenesis and the host immune responses involved remain to be fully elucidated. MicroRNAs (miRNAs) have emerged as a class of crucial regulators of numerous cellular processes, including responses to viral infections. Here, we employed a high-throughput sequencing approach to analyze the miRNA composition of the spleen and the lungs of chicken embryos upon IBV infection. Compared to healthy chicken embryos, 13 and six miRNAs were upregulated in the spleen and the lungs, respectively, all predicted to influence viral transcription, cytokine production, and lymphocyte functioning. Subsequent downregulation of NFATC3, NFAT5, SPPL3, and TGFB2 genes in particular was observed only in the spleen, demonstrating the biological functionality of the miRNAs in this lymphoid organ. This is the first study that describes the modulation of miRNAs and the related host immune factors by IBV in chicken embryos. Our data provide novel insight into complex virus-host interactions and specifically highlight components that could affect the host's immune response to IBV infection.


Subject(s)
Coronavirus Infections/veterinary , Gammacoronavirus/physiology , MicroRNAs/immunology , Ovum/virology , Poultry Diseases/immunology , Animals , Chickens , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/genetics , Cytokines/immunology , Gammacoronavirus/genetics , Lung/immunology , Lung/pathology , MicroRNAs/genetics , Ovum/immunology , Poultry Diseases/genetics , Poultry Diseases/pathology , Poultry Diseases/virology , Spleen/immunology , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL